Regularized Self-Intersection Local Times of Planar Brownian Motion
نویسندگان
چکیده
منابع مشابه
Multiple intersection exponents for planar Brownian motion
Let p ≥ 2, n1 ≤ · · · ≤ np be positive integers and B 1 , . . . , B n1 ; . . . ;B p 1 , . . . , B np be independent planar Brownian motions started uniformly on the boundary of the unit circle. We define a p-fold intersection exponent ςp(n1, . . . , np), as the exponential rate of decay of the probability that the packets ⋃ni j=1 B i j [0, t ], i = 1, . . . , p, have no joint intersection. The ...
متن کاملIntersection Exponents for Planar Brownian Motion
We derive properties concerning all intersection exponents for planar Brownian motion and we deene generalized exponents that loosely speaking correspond to non-integer numbers of Brownian paths. Some of these properties lead to general conjectures concerning the exact value of these exponents.
متن کاملRenormalized Self - Intersection Local Time for Fractional Brownian Motion
Let B H t be a d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). Assume d ≥ 2. We prove that the renor-malized self-intersection local time ℓ = T 0 t 0 δ(B H t − B H s) ds dt − E T 0 t 0 δ(B H t − B H s) ds dt exists in L 2 if and only if H < 3/(2d), which generalizes the Varadhan renormalization theorem to any dimension and with any Hurst parameter. Motivated by a resul...
متن کاملRegularity of Intersection Local Times of Fractional Brownian Motions
Let Bi be an (Ni, d)-fractional Brownian motion with Hurst index αi (i = 1,2), and let B1 and B2 be independent. We prove that, if N1 α1 + N2 α2 > d , then the intersection local times of B1 and B2 exist, and have a continuous version. We also establish Hölder conditions for the intersection local times and determine the Hausdorff and packing dimensions of the sets of intersection times and int...
متن کاملAnalyticity of intersection exponents for planar Brownian motion
We show that the intersection exponents for planar Brownian motions are analytic. More precisely, let B and B′ be independent planar Brownian motions started from distinct points, and define the exponent ξ(1, λ) by E [ P [ B[0, t] ∩B[0, t] = ∅ ∣∣ B[0, t] ]λ ] ≈ t, t → ∞. Then the mapping λ 7→ ξ(1, λ) is real analytic in (0,∞). The same result is proved for the exponents ξ(k, λ) where k is a pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1988
ISSN: 0091-1798
DOI: 10.1214/aop/1176991885