Regularized Self-Intersection Local Times of Planar Brownian Motion

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple intersection exponents for planar Brownian motion

Let p ≥ 2, n1 ≤ · · · ≤ np be positive integers and B 1 , . . . , B n1 ; . . . ;B p 1 , . . . , B np be independent planar Brownian motions started uniformly on the boundary of the unit circle. We define a p-fold intersection exponent ςp(n1, . . . , np), as the exponential rate of decay of the probability that the packets ⋃ni j=1 B i j [0, t ], i = 1, . . . , p, have no joint intersection. The ...

متن کامل

Intersection Exponents for Planar Brownian Motion

We derive properties concerning all intersection exponents for planar Brownian motion and we deene generalized exponents that loosely speaking correspond to non-integer numbers of Brownian paths. Some of these properties lead to general conjectures concerning the exact value of these exponents.

متن کامل

Renormalized Self - Intersection Local Time for Fractional Brownian Motion

Let B H t be a d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). Assume d ≥ 2. We prove that the renor-malized self-intersection local time ℓ = T 0 t 0 δ(B H t − B H s) ds dt − E T 0 t 0 δ(B H t − B H s) ds dt exists in L 2 if and only if H < 3/(2d), which generalizes the Varadhan renormalization theorem to any dimension and with any Hurst parameter. Motivated by a resul...

متن کامل

Regularity of Intersection Local Times of Fractional Brownian Motions

Let Bi be an (Ni, d)-fractional Brownian motion with Hurst index αi (i = 1,2), and let B1 and B2 be independent. We prove that, if N1 α1 + N2 α2 > d , then the intersection local times of B1 and B2 exist, and have a continuous version. We also establish Hölder conditions for the intersection local times and determine the Hausdorff and packing dimensions of the sets of intersection times and int...

متن کامل

Analyticity of intersection exponents for planar Brownian motion

We show that the intersection exponents for planar Brownian motions are analytic. More precisely, let B and B′ be independent planar Brownian motions started from distinct points, and define the exponent ξ(1, λ) by E [ P [ B[0, t] ∩B[0, t] = ∅ ∣∣ B[0, t] ]λ ] ≈ t, t → ∞. Then the mapping λ 7→ ξ(1, λ) is real analytic in (0,∞). The same result is proved for the exponents ξ(k, λ) where k is a pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1988

ISSN: 0091-1798

DOI: 10.1214/aop/1176991885